Poster 102 E

MEROPENEM-VABORBACTAM VERSUS BEST AVAILABLE THERAPY FOR CARBAPENEM-RESISTANT ENTEROBACTERIACEAE INFECTIONS IN TANGO II: OUTCOMES IN PATIENTS WITH CANCER

Presented at MAD-ID May 9-12, 2018 Orlando, FL PIERLUIGI VIALE¹, EVANGELOS J. GIAMARELLOS-BOURBOULIS², ROMNEY M. HUMPHRIES³, YOAV GOLAN⁴, GEORGE L. DAIKOS⁵, JEFFREY LOUTIT⁷, EDWARD SPINDLER⁶, SHU ZHANG⁶, THOMAS J. WALSH⁸, ELIZABETH L. ALEXANDER⁶

1. Alma Mater Studiorum University of Bologna, Bologna, Italy; 2. National and Kapodistrian University of Athens, Medical School, Greece; 3. Accelerate Diagnostics, Los Angeles, CA, USA; 4. Tufts Medical Center, Boston, MA, USA; 5. National and Kapodistrian University of Athens, Laiko Hospital, Athens, Greece; 6. Melinta Therapeutics, Parsippany, NJ, USA; 7. Weill Cornell Medicine of Cornell University, New York, NY, USA

1-844-MELINTA medinfo@melinta.com

ABSTRACT

Background: Patients with cancer, particularly those with hematological malignancies, are at high risk for mortality due to infections caused by carbapenem-resistant Enterobacteriaceae (CRE). Meropenem-vaborbactam (M-V) is a novel cyclic boronic acid beta-lactamase inhibitor combination developed for treatment of serious gram-negative infections, including CRE. This analysis reports outcomes among oncology patients in TANGO II, a randomised, open-label comparative trial with best available therapy (BAT) in patients with complicated urinary tract infection (cUTI), acute pyelonephritis (AP), hospital-acquired/ventilator-associated bacterial pneumonia (HABP/VABP), bacteremia, and complicated intra-abdominal infection (cIAI), due to known or suspected CRE.

Methods: Eligible patients were randomised 2:1 to M-V (2g/2g every 8h) or BAT for 7 to 14 days. BAT included any of the following, alone or in combination: carbapenems, aminoglycosides, polymyxin B, colistin, tigecycline, or ceftazidime-avibactam (monotherapy only). Clinical cure was defined as complete resolution of symptoms such that no further antimicrobial therapy was required. Microbiologic cure was defined as a composite of microbial eradication or presumed eradication at respective visit. Outcomes were assessed at end of treatment (EOT) and test of cure (TOC) visits.

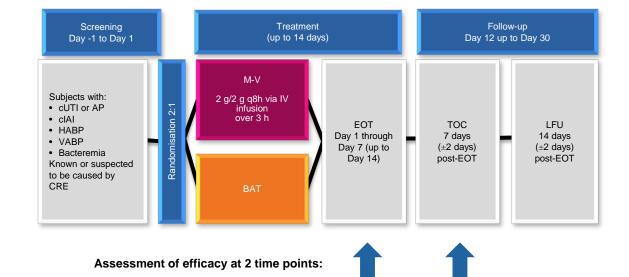
Results: 72 patients were randomised. 50 (69.4%) had a baseline pathogen. 22 (30.5%) had a prior diagnosis of malignancy (14 active diagnoses, 8 inactive-past diagnoses). 15 of these patients presented with a CRE pathogen (mCRE-MITT) and with infection types of: bacteremia (53.3%), cUTI/AP (20%), HABP/VABP (13.3%), and cIAI (13.3%). In this group, 10 (66.7%) patients were also immunocompromised. Clinical cure, microbiologic cure, and Day 28 mortality among the oncology patients in the mCRE-MITT population are shown. M-V was associated with fewer drug-related adverse events (16.7% vs. 33.3%), any serious adverse event (25.0% vs. 77.8%), and renal adverse events (8.3% vs. 22.2%) than

Outcomes in Oncology, mCRE-MITT	M-V (N = 8) n (%)	BAT (N = 7) n (%)	All (N = 15) n (%)	Difference (95% CI)¹
Clinical cure at EOT	7 (87.5)	1 (14.3)	8 (53.3)	+73.2 (21.0, 96.4)
Clinical cure at TOC (EOT+ 7 days)	6 (75.0)	0 (0)	6 (40.0)	+75.0 (27.1, 96.8)
Microbiologic cure at TOC (EOT+7 days) ²	5 (62.5)	0 (0)	5 (33.3)	+62.5 (14.3, 91.5)
All-cause mortality Day 28	1 (12.5)	4 (57.1)	5 (33.3)	-44.6 (-82.2, 10.2)

EOT, end of treatment; TOC, test of cure.

² Microbiologic cure is a composite of microbiologic eradication and presumed eradication at TOC.

Conclusion: In patients with a prior diagnosis of malignancy who presented with confirmed CRE infections, treatment with M-V was associated with higher clinical and microbiologic cure rates and a lower mortality rate than BAT (mCRE-MITT population). M-V is a promising treatment option for CRE in this population.


INTRODUCTION

- Patients with underlying malignancies, particularly hematologic malignancies, are at increased risk for carbapenem-resistant Enterobacteriaceae (CRE) infections due to factors such as: underlying immunosuppression, impaired mucocutaneous barrier mechanisms (e.g., due to mucositis), prolonged hospital stay, and empiric and/or prophylactic use of broad-spectrum antimicrobial agents.¹
- Among patients with solid tumors or hematologic malignancy and CRE infections, mortality rates are extremely high up to 60%.²
- The current best available therapy involves treatment with one or more of a limited pool of antimicrobial agents that have been associated with high levels of toxicity, potential for interaction with immunosuppressive and chemotherapeutic agents, or emergence of resistance.³⁻⁵
- Meropenem-vaborbactam (M-V) is a novel beta-lactam/beta-lactamase inhibitor combination developed for the treatment of serious gram-negative infections, including CRE.^{6,7}
- TANGO II is a Phase 3, multi-center, open-label comparative trial of the efficacy and safety of M-V versus best available therapy (BAT) in the treatment of serious infections caused by known or suspected CRE pathogens.
- Unlike most Phase 3 studies of new antimicrobials, TANGO II included patients with underlying and active malignancy, including immunocompromised patients, patients with hematological malignancies, and hematopoietic stem cell transplant recipients.⁸⁻¹¹

METHODS

- Phase 3, multi-center, randomised, open-label study of adults with infections due to known or suspected CRE, including complicated urinary tract infection (cUTI), acute pyelonephritis (AP), hospitalacquired/ventilator-associated bacterial pneumonia (HABP/VABP), bacteremia, or complicated intra-abdominal infection (cIAI).
- Eligible patients were randomised 2:1 to monotherapy with M-V or BAT for 7-14 days (FIGURE 1).
- BAT included (alone or in combination): a carbapenem, aminoglycoside, polymyxin B, colistin, tigecycline, or (monotherapy only) ceftazidime-avibactam.

FIGURE 1. Study Schema

cUTI, complicated urinary tract infection; AP, acute pyelonephritis; HABP/VABP, hospital-acquired/ventilator-associated bacterial pneumonia; cIAI, complicated intra-abdominal infection; CRE, carbapenem-resistant Enterobacteriaceae; EOT, end of therapy; TOC, test of cure; LFU, last follow up.

- Enrollment was stratified by infection type and geographic region.
- Key inclusion criteria: known or suspected (evidence of CRE in culture or molecular testing within past 90 days) CRE pathogen, requirement of ≥7 days IV antimicrobial therapy, confirmed cUTI/AP, HABP/VABP, bacteremia, or cIAI.
- Key exclusion criteria: receipt of more than 24 hours of potentially effective antimicrobials (unless documented clinical failure), immediate lifethreatening disease, known infection due to NDM, VIM, IMP or OXAencoded beta-lactamase.
- Efforts to reduce bias included blinded investigator (BI), blinded adjudication committee (BAC), and a source control adjudication committee (for cIAI).
- Clinical cure was defined as a complete resolution of signs/symptoms such that no further antimicrobial therapy was required and was assessed by the BI and primary investigator (PI) at two time points: end of therapy (EOT) and test of cure (TOC). In cases where the assessment by the BI and PI differed, clinical cure was adjudicated by the BAC.
- Patients with underlying malignancy included all those with the key terms
 "cancer" or "malignancy" reported in the medical history in TANGO II.

 A manual review of all patients and the qualifying key terms was then
 performed to ensure validity, in which one patient with a key term of
 "malignant melanoma removal" was removed from the population.
 Malignancy was determined by the PI to be either ongoing or not ongoing.
- Immunocompromised status was defined as underlying active leukemia, lymphoma, prior transplant or splenectomy on medical history; any active receipt of immunosuppressive drugs including selective immunosuppressants, calcineurin inhibitors, or high-dose systemic steroids (equivalent to \geq 20 mg/day of prednisone for \geq 2 weeks); or neutropenia (ANC <1000 cells/mm³) at any point during the study period.
- Difference estimates and 95% confidence intervals (CI) were obtained by Fisher's Exact test of equality.

RESULTS

- 72 patients with known or suspected CRE were enrolled.
- 50/72 (69.4%) were subsequently confirmed to have a qualifying (CFU criteria, corresponding sterile source) baseline gram-negative pathogen (micro-MITT population).
- 22/72 (30.5%) had an underlying malignancy; 18 of these were immunocompromised.
- 70/72 (97.2%) received study drug (MITT population).
- 43/70 (61.4%) had a qualifying CRE pathogen (mCRE-MITT population).
- 15 had an underlying malignancy; of which 10 of these were immunocompromised.
- The most common infection type was bacteremia (8/15 patients, 53.3%) followed by cUTI/AP (3/15 patients, 20.0%) (TABLE 1)

TABLE 1. Baseline
Characteristics of
Patients with Cancer
(mCRE-MITT
population)

	M-V (n=8) n (%)	BAT (n=7) n (%)
Underlying malignancy ¹		
Leukemia/lymphoma ¹	4 (50.0)	2 (28.6)
Any solid tumor ¹	4 (50.0)	5 (71.4)
Metastatic solid tumor ¹	2 (25.0)	2 (28.6)
Non-metastatic solid tumor ¹	2 (25.0)	3 (42.9)
Immunocompromised	6 (75.0)	4 (57.1)
Infection type		
cUTI/AP	2 (25.0)	1 (14.3)
cIAI	0 (0)	2 (28.6)
HABP/VABP	2 (25.0)	0 (0)
Bacteremia	4 (50.0)	4 (57.1)
¹ Patients may have more than one malignancy reported.		

- A significantly higher clinical cure rate at EOT and TOC was observed in patients with cancer who were treated with M-V compared to those treated with BAT (mCRE-MITT population). The difference in clinical cure rate at EOT was 73.2% (95% CI: 21.0% to 96.4%) and at TOC was 75.5% (95% CI: 27.1% to 96.8%) for patients treated with M-V.
- A significantly higher microbiologic cure rate at TOC (62.5%, 95% CI: 14.3% to 91.5%) was observed in patients with cancer treated with M-V (mCRE-MITT population).
- M-V treatment was associated with a significant decrease in Day 28 mortality (absolute risk reduction 44.6%, 95% CI:
- -82.2% to 10.2%) (**TABLE 2**).

TABLE 2. Efficacy
Outcomes Among
Patients With
Cancer (mCRE-MITT
population)

•	• ,				
Outcomes in Oncology, mCRE-MITT	M-V (n=8) n (%)	BAT (n=7) n (%)	All (n=15) n (%)	Difference (95% CI) ¹	
Clinical cure at EOT	7 (87.5)	1 (14.3)	8 (53.3)	+73.2 (21.0, 96.4)	
Clinical cure at TOC (EOT+ 7 days)	6 (75.0)	0 (0)	6 (40.0)	+75.0 (27.1, 96.8)	
Microbiologic cure at TOC (EOT+7 days) ²	5 (62.5)	0 (0)	5 (33.3)	+62.5 (14.3, 91.5)	
Day 28 mortality	1 (12.5)	4 (57.1)	5 (33.3)	-44.6 (-82.2, 10.2)	
¹ According to Fisher's Exact test; ² Microbiologic cure is a composite of clinical cure and microbiologic eradication.					

• Among patients with cancer, M-V was associated with fewer drug-related adverse events (16.7% vs. 33.3%), serious adverse events

(25.0% vs. 77.8%), and renal adverse events (8.3% vs. 22.2%) than BAT (**TABLE 3**).

TABLE 3. Adverse
Events and Safety
Endpoints Among
Patients With Cancer
(Safety population)

Adverse Events in Oncology, Safety population	M-V (n=12)	BAT (n=9)	Total (n=21)
	n (%)	n (%)	n (%)
Treatment-emergent adverse events (TEAEs)			
Any	9 (75.0)	9 (100.0)	18 (85.7)
Drug-related	2 (16.7)	3 (33.3)	5 (23.8)
Serious adverse events			
Any	3 (25.0)	7 (77.8)	10 (47.6)
Drug-related	0 (0)	0 (0)	0 (0)
Study drug discontinuation due to TEAEs	1 (8.3)	2 (22.2)	3 (14.3)
Study discontinuation due to TEAEs	1 (8.3)	4 (44.4)	5 (23.8)
Renal-related safety endpoints	1 (8.3)	2 (22.2)	3 (14.3)
Hematuria	1 (8.3)	0 (0)	1 (4.8)
Renal failure	0 (0)	1 (11.1)	1 (4.8)
Renal failure acute	1 (8.3)	1 (11.1)	2 (9.5)

CONCLUSIONS

- Patients with underlying malignancies (solid tumor and leukemia/lymphoma) are at increased risk for infection and mortality due to CRE pathogens.
- Approximately one-third of patients in TANGO II with a qualifying baseline CRE pathogen (mCRE-MITT population) had a prior or ongoing malignancy.
- Treatment of patients with cancer, including those immunocompromised, with meropenem-vaborbactam was associated with a significantly higher clinical and microbiologic cure rate compared to treatment with best available therapy.
- Treatment of patients with cancer, including those immunocompromised, with meropenem-vaborbactam was associated with a 44.6% absolute risk reduction in Day 28 mortality (95% CI: -82.2% to 10.2%).
- Treatment with meropenem-vaborbactam was associated with decreased adverse events, including serious adverse events and renal-related adverse events, than BAT among patients with cancer.
- Meropenem-vaborbactam is a promising new treatment option for CRE infections in this vulnerable patient population.

DISCLOSURES

This project has been funded in whole or in part with federal funds from the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response; Biomedical Advanced Research and Development Authority (BARDA), under Contract No.HHSO100201400002C with Rempex Pharmaceuticals, a whollyowned subsidiary of The Medicines Company. ClinicalTrials.gov Identifier: NCT01897779. Medical writing and editorial support was provided by Health and Wellness Partners, Upper Saddle River, New Jersey, funded by Melinta Therapeutics.

REFERENCES

- Satlin MJ, Jenkins SG, Walsh TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;58(9):1274-1283.
- Satlin MJ, Chen L, Patel G, et al. Multicenter clinical and molecular epidemiologic analysis of bacteremia due to carbapenem-resistant Enterobacteriaceae (CRE) in the CRE epicenter of the United States. *Antimicrob Agents Chemother*. 2017;61(4):e02349-16.
- Alexander E, Loutit J, Tumbarello M, et al. Carbapenem-resistant Enterobacteriaceae infections: results from a retrospective series and implications for the design of prospective clinical trials. *Open Forum Infect Dis.* 2017;4(2):ofx063.
- Falagas ME, Lourida P, Poulikakos P, et al. Antibiotic treatment of infections due to carbapenem-resistant
- Enterobacteriaceae: systematic evaluation of the available evidence. *Antimicrob Agents Chemother.* 2014;58(2):654-663.

 5. Munoz-Price LS, Poirel L, Bonomo R, et al. Clinical epidemiology of the global expansion of *Klebsiella pneumoniae*
- carbapenemases. *Lancet Infect Dis.* 2013;13(9):785-796.

 Hecker SJ, Reddy KR, Totrov M, et al. Discovery of a cyclic boronic acid beta-lactamase inhibitor (RPX7009) with utility vs
- class A serine carbapenemases. *J Med Chem.* 2015;58(9):3682-3692.

 Kaye KS, Bhowmick T, Metallidis S, et al. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I Randomized clinical trial.
- JAMA. 2018;319(8):788-799.
 Carmeli Y, Armstrong J, Laud PJ, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and *Pseudomonas aeruginosa* complicated urinary tract infections or complicated intra-
- resistant Enterobacteriaceae and *Pseudomonas aeruginosa* complicated urinary tract infections or complicated intraabdominal infections (REPRISE): a randomized, pathogen-directed, phase 3 study. *Lancet Infect Dis.* 2016;16(6):661-673.

 Mazuski JE, Gasinki LB, Armstrong J, et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus
- meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. *Clin Infect Dis.* 2016;62(11):1380-1389.
 Wagenlehner FM, Umeh O, Steenbergen J, et al. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomized, double-blind, phase 3 trial (ASPECT-cUTI).
- Lancet. 2015;385(9981):1949-1956.
 11. National Institutes of Health. Study of the safety, tolerability and efficacy of MK-7655+imipenem+cilastin versus iminenem/cilastin alone for the treatment of complicated urinary tract infection (MK-7655-003). Available at:
- imipenem/cilastin alone for the treatment of complicated urinary tract infection (MK-7655-003). Available at: https://clinicaltrials.gov/ct2/show/NCT01505634. NLM Identifier: NCT01505634. Accessed March 1, 2018.