Minocycline Activity Against Unusual Clinically Significant Gram-Negative Pathogens

Dee Shortridge, S.J. Ryan Arends, Jennifer M. Streit, Mariana Castanheira
JMI Laboratories, North Liberty, IA, USA

Introduction

Unusual non-fermenting Gram-negative (NFGN) pathogens, including Acinetobacter spp., Alcaligenes spp., Burkholderia cepacia, Chryseobacterium spp., and Stenotrophomonas maltophilia, are increasingly problematic due to the high prevalence of antibiotic-resistant strains. These pathogens can cause severe, occasionally fatal infections in immunocompromised patients.

Some strains are inherently resistant to common drug classes, and can acquire other resistance mechanisms, making them difficult to treat.

In this study, we analyzed the susceptibility of unusual NFGN isolates to minocycline.

Materials and Methods

From 2016-2018, 1,813 unusual NFGN species were isolated from hospitalized patients in 7,938 isolates in 4 continents. Isolates submitted 1 isolate per patient per infection episode that met local criteria for being the likely causative pathogen.

Results

- **The susceptibilities of minocycline and other comparators are shown for the 2 largest groups: non-baumannii-calcoaceticus Acinetobacter spp. (Table 1) and Burkholderia cepacia complex (Table 2).**
- **For Acinetobacter spp., minocycline had the highest susceptibility (≤0.25 mg/L) for 92.7% of isolates, with >90% susceptibility for >90% of isolates.**
- **For Burkholderia cepacia complex, minocycline had the highest susceptibility, ≤0.25 mg/L. The agent with the least susceptibility was amikacin (3%).**

- **Organisms included:**
 - Acinetobacter spp.
 - Alcaligenes spp.
 - Burkholderia cepacia complex
 - Chryseobacterium spp.
 - Stenotrophomonas maltophilia

- **These data suggest that minocycline remains a useful treatment option for infections caused by unusual NFGN.**

Acknowledgements

This study was supported by Meritor Therapeutics, Inc.

References

- **EUCAST (2020).** "The European Committee on Antimicrobial Susceptibility Testing. 2020. MIC Tables.”

Contact

Dee Shortridge, Ph.D.
JMI Laboratories
345 Beaver Kreek Centre, Suite A
North Liberty, Iowa 52317
Phone: (319) 656-3317
Fax: (319) 677-0171
Email: shortridge@jmi.com

Table 1. MIC distribution of minocycline tested against various unusual non-fermentative Gram-negative species with at least 10 isolates

<table>
<thead>
<tr>
<th>Organism</th>
<th>No. (%) of isolates</th>
<th>≤0.06</th>
<th>0.06-0.12</th>
<th>0.12-0.25</th>
<th>0.25-0.5</th>
<th>0.5-1.0</th>
<th>1.0-2.0</th>
<th>2.0-4.0</th>
<th>4.0-8.0</th>
<th>8.0-16.0</th>
<th>>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter baumannii</td>
<td>100 (91)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Acinetobacter calcoaceticus</td>
<td>100 (97)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2. Activity of minocycline and comparator antimicrobial agents tested against 424 Acinetobacter isolates (excluding Acinetobacter baumannii-calcoaceticus species complex)

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>No. (%) of isolates</th>
<th>≤0.06</th>
<th>0.06-0.12</th>
<th>0.12-0.25</th>
<th>0.25-0.5</th>
<th>0.5-1.0</th>
<th>1.0-2.0</th>
<th>2.0-4.0</th>
<th>4.0-8.0</th>
<th>8.0-16.0</th>
<th>>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minocycline</td>
<td>100 (91)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3. Activity of minocycline and comparator antimicrobial agents tested against 411 Acinetobacter spp. isolates

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>No. (%) of isolates</th>
<th>≤0.06</th>
<th>0.06-0.12</th>
<th>0.12-0.25</th>
<th>0.25-0.5</th>
<th>0.5-1.0</th>
<th>1.0-2.0</th>
<th>2.0-4.0</th>
<th>4.0-8.0</th>
<th>8.0-16.0</th>
<th>>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minocycline</td>
<td>100 (91)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>