Delafloxacin Activity against Staphylococcus aureus with Reduced Susceptibility or Resistance to Methicillin, Vancomycin, Daptomycin or Linezolid

Introduction

- Delafloxacin (ABT 492) is a new fluoroquinolone that is available in both oral and parenteral formulations.
- Delafloxacin has been approved by the Food and Drug Administration (FDA) for the management of acute bacterial skin and skin structure infections.
- Delafloxacin's in vitro activity and favorable clinical response against MRSA infections distinguishes it from other fluoroquinolones.
- This research focused on evaluating delafloxacin's activity against MRSA strains including blood isolates and isolates with reduced susceptibility or resistance to daptomycin, vancomycin, linezolid, and levofloxacin.
- We also evaluated activity based upon SCC mer typing.

Materials

- A collection of 183 isolates were selected for in vitro testing:
 - Vancomycin-resistant S. aureus (VRSA) (n=15), vancomycin intermediate S. aureus (VISA) (n=31), linezolid resistant S. aureus (LISA) (n=4) and, heteroresistant VISA (hVISA) (n=1), were obtained from the Network on Antimicrobial Resistance in Staphylococcus aureus (NARS) program (now known as BEI Resources).
 - Two LISA isolates were obtained from Robson Memorial Medical Center in Ohio. The remaining isolates were samples from Ascension-St. John Hospital.

Methods

- The minimal inhibitory concentration (MIC) of delafloxacin (DFX), levofloxacin (LEV), vancomycin (VAN), daptomycin (DAP), ceftaroline (CFT) and linezolid (LZD) were determined by broth microdilution testing using calcium-adjusted Mueller Hinton broth.
- All testing was performed per CLSI guidelines and all plates were prepared in house. All plates were inoculated with approximately 5 x 10^4 CFU/ml of each isolate and incubated at 35°C for 18 to 24 hours.
- S. aureus ATCC 29213 was used to monitor quality control for all the agents. MICs were read visually as the lowest drug concentration with no visible bacterial growth.
- FDA breakpoints were used to determine delafloxacin susceptibility and CLSI breakpoints were used to determine susceptibility for all the other agents.
- Minimal bactericidal concentrations (MBCs) were also determined, following CLSI guidelines. All testing was performed in triplicate.
- Staphylococcal cassette chromosome mec element (SCC) types were determined by a multiplex PCR method (Zhang et al. 2005, JCM43:5026-5033). Isolates that were non-typeable with the multiplex PCR were analyzed by typing.

Results

- Table 1: MRSA results of blood isolates (n=110) collected at Ascension St. John Hospital
- Table 2a: MIC results of blood isolates (n=64) identified as SCC type IVa
- Table 2b: MIC results of blood isolates (n=16) identified as SCC type IVb
- Table 2c: MIC results of blood isolates (n=15) identified as Vancomycin Intermediate
- Table 2d: MIC results of blood isolates (n=40) identified as Vancomycin Non-susceptible
- Table 3: Delafloxacin results from 55 (of 110) isolates tested with a levofloxacin MIC of ≥ 8.0 mcg/ml
- Table 4a: MIC results of blood isolates (n=30) identified as SCC type IV
- Table 4b: MIC results of blood isolates (n=16) identified as SCC type IVb
- Table 4c: MIC results of blood isolates (n=15) identified as Vancomycin Intermediate
- Table 4d: MIC results of blood isolates (n=15) identified as Vancomycin Intermediate

Conclusions

- Among SCC IVa strains delafloxacin demonstrated a high level of susceptibility (94%) compared to levofloxacin (44%). Both delafloxacin and levofloxacin demonstrated poor activity against the genotype SCC II with 3% and 0% susceptibility, respectively. Since the genotype SCC IVa is most often community-acquired one should anticipate that delafloxacin will be more active against Staphylococcus aureus arising in the community than in the hospital.
- Delafloxacin demonstrated some activity against DNSSA and VISA at 38% and 40% respectively. Delafloxacin is generally not active against VRSA and LISA.
- When evaluating delafloxacin against isolates with levofloxacin MIC’s ≥ 8 mcg/ml suggesting the presence of quinolone resistance-determining regions, delafloxacin was active against 36.4% of strains.
- In vitro activity for delafloxacin will vary based upon resistance to other antimicrobial agents and genetic markers including the number of quinolone resistance-determining region mutations, thus restating the need for performance of susceptibility testing to assist in clinical decision making.

This study was supported by an investigator initiated grant from Melinta Therapeutics, Inc.